Degree Bounds on Polynomials and Relativization Theory

نویسندگان

  • Holger Spakowski
  • Rahul Tripathi
چکیده

We demonstrate the applicability of the polynomial degree bound technique to notions such as the nonexistence of Turing-hard sets in some relativized world, (non)uniform gap-definability, and relativized separations. This way, we settle certain open questions of Hemaspaandra, Ramachandran & Zimand [HRZ95] and Fenner, Fortnow & Kurtz [FFK94], extend results of Hemaspaandra, Jain & Vereshchagin [HJV93] and construct oracles achieving desired results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds

The problem of constructing explicit functions which cannot be approximated by low degree polynomials has been extensively studied in computational complexity, motivated by applications in circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally decodable codes. Still, most of the known lower bounds become trivial for polynomials of superlogarithmic degree. Here, we s...

متن کامل

Lower Bounds Using Dual Polynomials ∗

Representations of Boolean functions by real polynomials play an important role in complexity theory. Typically, one is interested in the least degree of a polynomial p(x 1 ,. .. , x n) that approximates or sign-represents a given Boolean function f (x 1 ,. .. , x n). This article surveys a new and growing body of work in communication complexity that centers around the dual objects, i.e., poly...

متن کامل

Communication Lower Bounds Using Dual Polynomials

Representations of Boolean functions by real polynomials play an important role in complexity theory. Typically, one is interested in the least degree of a polynomial p(x1, . . . , xn) that approximates or sign-represents a given Boolean function f (x1, . . . , xn). This article surveys a new and growing body of work in communication complexity that centers around the dual objects, i.e., polyno...

متن کامل

Lower Bounds by Birkhoff Interpolation

In this paper we give lower bounds for the representation of real univariate polynomials as sums of powers of degree 1 polynomials. We present two families of polynomials of degree d such that the number of powers that are required in such a representation must be at least of order d. This is clearly optimal up to a constant factor. Previous lower bounds for this problem were only of order Ω( √...

متن کامل

Volumes of Nonnegative Polynomials, Sums of Squares and Powers of Linear Forms

We study the quantitative relationship between the cones of nonnegative polynomials, cones of sums of squares and cones of sums of powers of linear forms. We derive bounds on the volumes (raised to the power reciprocal to the ambient dimension) of compact sections of the three cones. We show that the bounds are asymptotically exact if the degree is fixed and number of variables tends to infinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004